If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x-10=0
a = 10; b = -20; c = -10;
Δ = b2-4ac
Δ = -202-4·10·(-10)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*10}=\frac{20-20\sqrt{2}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*10}=\frac{20+20\sqrt{2}}{20} $
| x+2x-3=x-3x17 | | 5=3=4dd= | | 7x-17=102 | | 43=5w-17 | | 59(8+c)=20 | | x^2+0.5x^2=361 | | f(3)=2+4 | | 10=12+x/5 | | |-4+m|=3 | | Y+(.45x)=785341.62 | | 18-7r=4 | | w/36=5/8 | | 8x+1=4x+21 | | 1/2x^2+5x+6=0 | | 7x-8=26 | | 2x+16=3x-7=180 | | (x+3)2-1=(x+4)(x+2) | | 6m+4=120 | | 3=-8+x/4 | | 14=c+8+7 | | 3x2−27=0 | | 1/4x+8=x | | 3x+10=5x-25 | | 2x+16=3x-7 | | -3(11-3x)=24 | | a+-2(1/3)=15(1/3) | | 3x-31=14 | | 25-t6=(5+t3)(5-t3) | | 2n+1/10n=1+1/6 | | 8^x+4=16 | | 2(3x-4)=2x+ | | 2x-43=23 |